Skip to content

Quick Start

Get up and running with Dagu in under 2 minutes.

Install Dagu

bash
npm install -g dagu
bash
curl -L https://raw.githubusercontent.com/dagu-org/dagu/main/scripts/installer.sh | bash
bash
docker pull ghcr.io/dagu-org/dagu:latest
bash
brew install dagu-org/brew/dagu

See Installation Guide for more options.

Your First Workflow

Example DAGs

When you first start Dagu with an empty DAGs directory, it automatically creates several example workflows to help you get started:

  • example-01-basic-sequential.yaml - Basic sequential execution
  • example-02-parallel-execution.yaml - Parallel task execution
  • example-03-complex-dependencies.yaml - Complex dependency graphs
  • example-04-scheduling.yaml - Scheduled workflows
  • example-05-nested-workflows.yaml - Nested sub-workflows
  • example-06-container-workflow.yaml - Container-based workflows

To skip creating these examples, set DAGU_SKIP_EXAMPLES=true or add skipExamples: true to your config file.

1. Create a workflow

bash
mkdir -p ~/.config/dagu/dags && cat > ~/.config/dagu/dags/hello.yaml << 'EOF'
steps:
  - echo "Hello from Dagu!"
  - echo "Running step 2"
EOF
bash
mkdir -p ~/.dagu/dags && cat > ~/.dagu/dags/hello.yaml << 'EOF'
steps:
  - echo "Hello from Dagu!"
  - echo "Running step 2"
EOF

2. Run it

bash
dagu start hello
bash
docker run --rm \
  -v ~/.dagu:/var/lib/dagu \
  ghcr.io/dagu-org/dagu:latest \
  dagu start hello

Output:

┌─ DAG: hello ─────────────────────────────────────────────────────┐
│ Status: Success ✓           | Started: 23:34:57 | Elapsed: 471ms │
└──────────────────────────────────────────────────────────────────┘

Progress: ████████████████████████████████████████ 100% (2/2 steps)

Note: The output may vary if you are using Docker.

2.5. Validate (optional)

Before running, you can validate the DAG structure without executing it:

bash
dagu validate ~/.config/dagu/dags/hello.yaml

If there are issues, the command prints human‑readable errors and exits with code 1.

3. Check the status

bash
dagu status hello
bash
docker run --rm \
  -v ~/.dagu:/var/lib/dagu \
  ghcr.io/dagu-org/dagu:latest \
  dagu status hello

4. View in the UI

bash
dagu start-all
bash
docker run -d \
  -p 8080:8080 \
  -v ~/.dagu:/var/lib/dagu \
  ghcr.io/dagu-org/dagu:latest \
  dagu start-all

Open http://localhost:8080

Understanding Workflows

A workflow is a YAML file that defines steps and their dependencies:

yaml
steps:
  - echo "First step"
  - echo "Second step"  # Runs after first step automatically

Key concepts:

  • Steps: Individual tasks that run commands
  • Dependencies: Control execution order
  • Commands: Any shell command you can run

Working Directory

By default, DAGs execute in the directory where the YAML file is located. You can override this with workingDir:

yaml
# All relative paths are resolved from workingDir
workingDir: /app/project
dotenv: .env          # Loads /app/project/.env
steps:
  - ls -la            # Lists files in /app/project
  - cat ./config.yml  # Reads /app/project/config.yml

Parameters

You can define parameters for workflows to make them reusable:

yaml
# backup.yaml
params:
  - SOURCE: /data
  - DEST: /backup
  - TS: "`date +%Y%m%d_%H%M%S`"  # Command substitution

steps:
  # Backup files
  - tar -czf ${DEST}/backup_${TS}.tar.gz ${SOURCE}
  # Clean old backups
  - find ${DEST} -name "backup_*.tar.gz" -mtime +7 -delete

Run with parameters:

bash
dagu start backup.yaml -- SOURCE=/important/data DEST=/backups

Error Handling

Add retries and error handlers:

yaml
steps:
  - command: curl -f https://example.com/data.zip -o data.zip
    retryPolicy:
      limit: 3
      intervalSec: 30
      
  - command: echo "Unzipping data and processing"
    continueOn:
      failure: true  # Continue even if this fails
      
handlerOn:
  failure:
    command: echo "Workflow failed!" | mail -s "Alert" [email protected]
  success:
    command: echo "Success at $(date)"

Using Containers

Run all steps in Docker containers:

yaml
# Using a container for all steps
container:
  image: python:3.11
  volumes:
    - ./data:/data
steps:
  # write data to a file
  - python -c "with open('/data/output.txt', 'w') as f: f.write('Hello from Dagu!')"
  # read data from the file
  - python -c "with open('/data/output.txt') as f: print(f.read())"

Scheduling

Run workflows automatically:

yaml
schedule: "0 2 * * *"  # 2 AM daily
steps:
  - echo "Running nightly process"

The workflow will execute every day at 2 AM.

What's Next?

Released under the MIT License.